
Efficient Cooperative Inverse Reinforcement Learning

Malayandi Palaniappan * 1 Dhruv Malik * 1 Dylan Hadfield-Menell 1 Anca Dragan 1 Stuart Russell 1

1. Introduction
For an autonomous system to provide value to humans
without endangering them, it must be able to accurately
and reliably identify humans’ intended objective, and act
accordingly to maximize humans’ gain. This value align-
ment problem is difficult given that humans are notoriously
prone to misstating their objectives.

One formalization of the value alignment problem is
the Cooperative Inverse Reinforcement Learning (CIRL)
framework, which formulates the problem as a two-player,
asymmetric information game between a human and a
robot (Hadfield-Menell et al., 2016).

Previous work showed that the problem can be reduced into
a particular type of partially observable Markov decision
process (POMDP), known as a Coordinator-POMDP, but
observed that the formulation was still not tractable. The
large size of the action space in the Coordinator-POMDP
makes it ill suited for POMDP algorithms, whose complex-
ity largely depends on the size of the action space. We ver-
ify this experimentally – exact POMDP value iteration fails
to solve all but the simplest CIRL problems.

We derive a more efficient exact algorithm for solving
CIRL games by introducing a modification to the POMDP
value iteration update rule that significantly reduces the
size of the action space in the problem. This update nat-
urally extends itself to existing approximate POMDP plan-
ning algorithms. Finally, we introduce a benchmark CIRL
game and test our algorithms experimentally, verifying that
they outperform their exact and approximate counterparts.

2. Background
2.1. Running Example

Consider a cooking task, which we refer to as ChefWorld,
where a robot seeks to prepare a meal for a human. The
robot has m units each of n ingredients, which may be used

*Equal contribution 1Department of Electrical Engineering and
Computer Sciences, UC Berkeley, CA, United States. Correspon-
dence to: Malayandi Palaniappan <malayandi@berkeley.edu>,
Dhruv Malik <dhruvmalik@berkeley.edu>.

to prepare the meal. At any time step, the robot may choose
to prepare a single unit of any ingredient or to not prepare
any ingredient at all. The robot receives a reward of 1 if it
succeeds in preparing the meal and a reward of 0 otherwise.
We introduce definitions in the context of this example.

Figure 1. The value attained by POMCP, FV-POMCP, and our ap-
proximate algorithm in 30,000 samples on the ChefWorld domain
with various numbers of ingredients.

2.2. POMDPs

The POMDP framework provides a rich model for plan-
ning under uncertainty (Sondik, 1971; Kaelbling et al.,
1998). Formally, a POMDP is defined as a tuple
hS,A,Z, T,O, r, �i where S is the set of states; A is the
set of actions available to the agent; Z is the set of obser-
vations; T is the transition distribution which specifies the
probability of transitioning to some state given the current
state and action to be taken; O is the observation distribu-
tion which specifies the probability of receiving some ob-
servation given the current state and last action taken; r is
the reward function; and � is the discount factor.

In a POMDP, the agent cannot observe the state; instead,
it receives an observation at every time step, which helps
inform its decision making. The behavior of the agent is
given by a conditional plan � = (a, v) where a denotes
the agent’s action, and v is a mapping from observations to
future conditional plans for the agent to follow.

Efficient Cooperative Inverse Reinforcement Learning

Formally, a policy in a POMDP is a mapping from
action-observation histories to conditional plans. However,
(Sondik, 1971) showed that the belief b 2 �S, where b(s)
is the probability that the agent is in state s given her his-
tory of actions and observations, is a sufficient statistic in
a POMDP i.e. policies in a POMDP need only depend on
this belief instead of entire action-observation histories.

We can frame our cooking task as a POMDP. Consider a
robot who wants to prepare a meal for a human, but does
not know whether the human prefers a sandwich or soup;
instead, it maintains a belief, which describes how much
it thinks that the human prefers either of the two meals.
The robot has access to the following ingredients: bread,
tomato and meat. At each time step, the robot may choose
to prepare any of the three ingredients. The human then
responds by preparing an ingredient herself according to
some fixed policy; the robot observes which ingredient the
human prepares. An example of a conditional plan for the
robot would be as follows: prepare meat now and if the hu-
man responds by preparing bread, prepare a second slice of
bread to make the sandwich; if the human prepares toma-
toes, prepare another batch of tomatoes to make soup; or if
the human prepares meat, do not prepare any ingredient.

The ↵-vector of a conditional plan is defined as the vec-
tor containing the value of following the plan at any given
state, which is given by

↵�(s) = R(s) + �
X

s02S

X

z2Z

P (s0, z | s, a)↵v(z)(s
0
) (1)

The value of a plan at a belief b is defined as the expected
value of the plan across the states i.e. V�(b) = b · ↵� =P

s2S b(s)↵�(s). The goal of an agent in a POMDP is to
find the plan with maximal value from her current belief.

The value iteration algorithm can be used to exactly com-
pute the optimal conditional plan for an agent in a POMDP
with finite horizon T (Sondik, 1971). The algorithm func-
tions by rolling back values from the horizon, generat-
ing new conditional plans at each time-step and evaluating
them in terms of future plans using Eqn. (1). The algo-
rithm evaluates all plans of length T and selects the one
with maximal value at the agent’s initial belief.

2.3. Cooperative Inverse Reinforcement Learning

Cooperative Inverse Reinforcement Learning (CIRL) for-
malizes the value-alignment problem as a two-player,
asymmetric information game between a human and a
robot, both of whose goals are to maximize their expected
reward (Hadfield-Menell et al., 2016). Crucially, the robot
shares the human’s reward function, which is parameter-
ized by a reward parameter ✓ known only to the human.
This structure incentivizes the robot to learn the human’s
true preference and to maximize reward for the human,

hence addressing the value alignment problem.

Formally, a CIRL game is a multi-agent game between
a human H and a robot R denoted by the tuple M =

hX, {AH ,AR}, T, {⇥, r}, P0, �i where X is the set of ob-
servable world-states; AH and AR are the actions avail-
able to H and R respectively; T is the transition distribu-
tion specifying the probability of transitioning to some state
given the current state and actions of both agents; ⇥ is the
set of possible reward parameters; r is the reward function
shared by both agents; P0 is the initial distribution over
states and reward parameters; and � is the discount factor.

By adapting ChefWorld to include a human H and a robot
R who collaborate to make a meal, we can frame the prob-
lem as a CIRL game. Say H wants to prepare either a sand-
wich or soup with the help of R who does not know which
meal the human has chosen. At each time step, both agents
prepare an ingredient and R observes which ingredient H
prepared. Both agents receive a reward of 1 if they success-
fully prepare the correct meal, and 0 otherwise.

This is rather distinct from the POMDP formulation of
ChefWorld where the human behaved with a fixed policy
that did not take into account the robot’s future behavior.
In this case, there is a strong interdependence between H’s
actions and the robot’s future behavior. In order to maxi-
mize her reward, H will choose to prepare that ingredient
which conveys the most information about her preferred
meal to the robot. Her actions influence R’s belief over her
preferred meal, which in turn influence both R’s and her
future actions.

As a multi-agent game, a CIRL game technically belongs to
the class of Dec-POMDPs (Bernstein et al., 2002). How-
ever, the problem of finding an optimal pair of strategies
in a CIRL game can be reduced to solving a Coordinator-
POMDP. The states in the coordinator-POMDP are tu-
ples containing the world-state and reward parameter i.e.
S = X ⇥⇥; the actions are tuples (�H , aR) specifying for
H a decision rule �H : ⇥ ! AH , which maps reward pa-
rameters to human actions, and for R an action aR; the ob-
servations are H’s action at the last time step; the remaining
parameters of the Coordinator-POMDP are inherited from
the CIRL game (Hadfield-Menell et al., 2016).

In our cooking task, an example of an action in the
Coordinator-POMDP is a tuple, where the first entry spec-
ifies that H prepares bread if she prefers a sandwich and
prepares tomatoes if she prefers soup, and the second entry
specifies that the robot prepares bread regardless.

3. A Modified Bellman Update for CIRL
Formulating the CIRL game as a Coordinator-POMDP al-
lows us to find an optimal policy for R using standard

Efficient Cooperative Inverse Reinforcement Learning

POMDP algorithms. However, this problem is still very
difficult. The action space in the Coordinator POMDP has
size |AH ||⇥||AR| and thus POMDP value iteration, which
scales poorly with the size of the action space (Russell
et al., 1995), can only feasibly solve the most straightfor-
ward CIRL problems.

If H were following a fixed policy based on the augmented
state (x, ✓), we could reduce the complexity of the prob-
lem significantly by accounting for H’s behavior implicitly
in the transition-observation distribution as opposed to ex-
plicitly doing so in the action space.

However, in the interactive setting of a CIRL game, H may
plan for any changes in R’s belief and so, if we included
H’s behavior in the transition-observation distribution, the
distribution would change at each time step based on R’s
belief, or, more accurately, R0s intended response to H’s
action.

Our key insight is that, during planning, we have access
to R’s intended future response to each of H’s action and
hence have enough information to compute H’s action.
We can therefore compute the optimal robot policy in a
CIRL game by solving a POMDP with time-varying dy-
namics, where the action space has size |AR| as opposed
to |AH ||⇥||AR|. In our ChefWorld domain, where n de-
notes the number of ingredients and k denotes the number
of recipes, our approach reduces the size of the action space
from (n+ 1)

k+1 to simply n+ 1.

3.1. The Transition Dynamics

If H were to follow some policy that depends only on the
state s = (x, ✓), the joint transition-observation dynamics
of the Coordinator-POMDP can be computed according to

P (s0, aH | s, aR) = P ((x0, ✓0), aH | (x, ✓), aR)
= P ((x0, ✓0) | (x, ✓), aH , aR) · P (aH | (x, ✓), aR)
= T (x, aH , aR, x0

) · 1(✓ = ✓0) · P (aH | x, aR, ✓)
However, in reality, H behaves according to her Q-values,
picking the action that maximizes her expected value, and
not according to some fixed policy. Due to the interde-
pendence between H’s and R’s behavior, these Q-values
necessarily depend on R’s conditional plan. The joint
transition-observation dynamics of the game are then:

P (s0, aH | s,�) = P ((x0, ✓0), aH | (x, ✓), (aR, v))
= T (x, aH , aR, x0

) · 1(✓0 = ✓) · P (aH | x, aR, v, ✓)
= T (x, aH , aR, x0

) · 1(✓0 = ✓)·
1(aH = argmax

aH
Q(x, aH , aR, v, ✓)) (2)

These dynamics are not static since they depend on the
robot’s future actions, and hence our problem is no longer a

POMDP, which requires that the transition-observation dy-
namics be static. However, we can still solve the problem
exactly by adapting POMDP value iteration.

3.2. Adapting POMDP Value Iteration

Due to the fact that POMDP value iteration functions by
rolling back the values of the game from the horizon in
the form of ↵-vectors, for a given augmented-state and
robot-action pair, we can easily compute the human’s Q-
values as an expectation over the future alpha vectors:
Q(x, aH , aR, v, ✓) =

P
s0 T (x, a

H , aR, x0
) · ↵v(aH)(s

0
)

We can thus adapt the backup rule used to compute the
↵-vectors for conditional plans, given in Eqn. (1), by
replacing the joint transition-observation probability with
P (s0, aH | s,�) as in Eqn. (2). With the sole exception
of this small change, we can follow the POMDP value it-
eration algorithm identically to compute the optimal robot
strategy in the CIRL game while reasoning over an action
space with size |AR| instead of |AH ||⇥||AR|. The pseu-
docode for our algorithm is presented below.

Algorithm 1 Exact Value Iteration for CIRL games
1: � set of height 1 plans (i.e. actions)
2: for t in {1, 2, . . . , T} do
3: �

0 �

4: � set of all plans consisting of an action and a
map from observations to plans in �

0

5: for � = (aR, v) 2 � do
6: for s 2 S do
7: for aH 2 AH do
8: ↵v(aH)(s) = R(s) + �·
9:

P
s0
P

aH P (s0, aH | s,�)↵v(aH)(s
0
)

10: where P (s0, aH | s,�) is as in Eqn. 2
11: end for
12: end for
13: end for
14: � Prune(�)
15: end for
16: Return �

If |�t+1| denotes the number of plans beginning at time
t + 1, one step of POMDP value iteration runs in
O�|S|2|Z||A||�t+1||Z|� time, generating and evaluating
|A||�t+1||Z| new plans which each begin at time t1.

The action space in the Coordinator-POMDP has size
|AH ||⇥||AR|. In our adapted approach, the action space
has size |AR|. Therefore, our algorithm reduces the num-
ber of plans generated at, and the time taken to run, each

1”Pruning” methods which reduce the size of the set of condi-
tional plans at each time step often improve performance, but the
exponential nature of the algorithm’s growth remains unhindered
(Monahan, 1982; Cassandra et al., 1997).

Efficient Cooperative Inverse Reinforcement Learning

Table 1. Time taken (in seconds) to find the optimal robot policy
using exact value iteration and our exact algorithm on the Chef-
World domain with various numbers of possible recipes. NA de-
notes that the algorithm depleted the memory in our system.

RECIPES EXACT VI OURS

2 4.448 ± 0.057 0.071 ± 0.013
3 394.546 ± 6.396 0.111 ± 0.013
4 NA 0.158 ± 0.003
5 NA 0.219 ± 0.007
6 NA 0.307 ± 0.005

time step by a factor of |AH |⇥.

Given that this exponential explosion of the number of
plans occurs at every time step, it is clear that our algo-
rithm offers a significant improvement to value iteration
applied on the Coordinator-POMDP, in terms of both time
and space complexity.

4. Adapting POMCP
POMCP is a state-of-the-art approximate algorithm used
to solve large POMDPs (Silver & Veness, 2010). The al-
gorithm incrementally constructs a search tree of action-
observation histories, using Monte-Carlo simulations to es-
timate the value of each history node in the tree. At each
time step, an action is selected and an observation is then
sampled, determining the current node in the search tree.
We repeat this simulation process until we reach a leaf
node, at which point we use a rollout policy to gather re-
ward, and then back this reward up the tree.

We use our updated backup rule to modify POMCP such
that it may solve our reduced problem with only |AR| ac-
tions. The key idea is to approximately compute H’s pol-
icy while running the algorithm. We do so by maintaining
a live estimate of the sampled Q-values for H at each node.
In the limit of infinite samples, these Q values converge,
allowing us to find a policy for H that is the best response
to R’s policy.

While POMCP scales well with the size of the state space,
it does not scale well with the size of the action and ob-
servation space, which determine the branching factor in
the search tree. The branching factor for the search tree
in POMCP when applied on the Coordinator-POMDP is
|AH ||⇥||AR| and thus POMCP struggles to optimally solve
even reasonably complex CIRL games.

This same problem plagues Factored-Value POMCP (FV-
POMCP), a state-of-the-art algorithm for solving multi-
agent problems, when used to solve CIRL games. FV-
POMCP, like POMCP, maintains a search tree of joint his-

tories (Amato et al., 2015) and so, a large action space still
results in a large branching factor. Thus, FV-POMCP sim-
ilarly struggles to solve non-trivial CIRL games.

By implicitly computing H’s policy while running the al-
gorithm, we reduce the branching factor in the search tree
to |AH ||AR|. Our algorithm thus scales much better to
larger CIRL problems than either POMCP or FV-POMCP.

5. Experiments
We ran exact POMDP value iteration and our adapted
method on the ChefWorld domain with two ingredients and
various numbers of possible recipes, measuring the average
time taken to compute the optimal policy across 20 runs.
The results are given in Table 1. Our method significantly
outperforms exact POMDP value iteration, which failed to
compute the optimal policy in three of the five experiments
after depleting the memory in our system on every run.

We ran POMCP, FV-POMCP and our approximate algo-
rithm on the ChefWorld domain with two recipes, vary-
ing the number of ingredients in the game and keeping
other parameters constant. We measured the average per-
formance of each algorithm in 30000 samples across 20
runs. The results of our experiment, depicted in Figure 1,
demonstrate that our algorithm outperforms the other two
across the board, but especially for larger number of ingre-
dients (i.e. number of actions available to both agents).

Additionally, we ran each algorithm on a single instanti-
ation of the ChefWorld domain and tracked the value at-
tained across 500,000 samples. Our results are depicted in
Figure 2. While all algorithms eventually compute the op-
timal strategy, our algorithm does so significantly faster.

Figure 2. Value attained by POMCP, FV-POMCP and our approx-
imate algorithm applied on the ChefWorld domain with 2 recipes
and 6 ingredients.

Efficient Cooperative Inverse Reinforcement Learning

References
Amato, Christopher, Oliehoek, Frans A, et al. Scalable

planning and learning for multiagent pomdps. In AAAI,
pp. 1995–2002, 2015.

Bernstein, Daniel S., Givan, Robert, Immerman, Neil, and
Zilberstein, Shlomo. The complexity of decentralized
control of Markov decision processes. Mathematics of
Operations Research, 27(4):819–840, 2002.

Cassandra, Anthony R., Littman, Michael L., and Zhang,
Nevin Lianwen. Incremental pruning: A simple, fast, ex-
act method for partially observable markov decision pro-
cesses. In UAI ’97: Proceedings of the Thirteenth Con-
ference on Uncertainty in Artificial Intelligence, Brown
University, Providence, Rhode Island, USA, August 1-3,
1997, pp. 54–61, 1997.

Hadfield-Menell, Dylan, Russell, Stuart J, Abbeel, Pieter,
and Dragan, Anca. Cooperative inverse reinforcement
learning. In Advances in neural information processing
systems, pp. 3909–3917, 2016.

Kaelbling, Leslie Pack, Littman, Michael L, and Cassan-
dra, Anthony R. Planning and acting in partially observ-
able stochastic domains. Artificial intelligence, 101(1):
99–134, 1998.

Monahan, George E. State of the art - a survey of partially
observable markov decision processes: theory, models,
and algorithms. Management Science, 28(1):1–16, 1982.

Russell, Stuart, Norvig, Peter, and Intelligence, Artificial.
A modern approach. Artificial Intelligence. Prentice-
Hall, Egnlewood Cliffs, 25:27, 1995.

Silver, David and Veness, Joel. Monte-carlo planning in
large pomdps. In Advances in neural information pro-
cessing systems, pp. 2164–2172, 2010.

Sondik, Edward J. The Optimal Control of Partially Ob-
servable Markov Processes. PhD thesis, Stanford Uni-
versity, 1971.

